

Series: Air To Air Intensifier/Air To Hydraulic Intensifiers

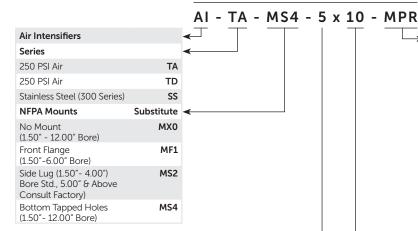
Air-to-Air or Air-to-Hydraulic intensifiers are single-shot, one output per stroke design.

Benefits of Air to Air Intensifiers:

Quick Response

- High Volume Outputs Available

- Simple Design
- Heavy-Duty Construction


Benefits of Air to Hydraulic Intensifiers:

- Quick Response
- High Volume Outputs Available
- Intensified Material Can Be Oil or Other Media
- Can Be Used For Measuring and Dispensing

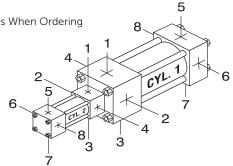
Cyl. #1

About our Part Number System

- Simple, easy to understand
- No excessive codes!
- Eliminates mistakes when ordering

Example: Cyl. 1 is a standard 'TA' series, MS4 mount, 5" bore X 10" stroke, with a magnet (for Reed Switches), Air-to-Hydraulic Cylinder.

Cyl. 2 is a 'TA' series, MX0 (no mount), 2.50" bore X 10" stroke with "TH" option.


Part Number:

02

AI - TA - MS4 - 5 x 10 - MPR with TA - MX0 - 2.50 x 10 - TH

Standard Port and Cushion Adjustment Positions

- Ports Positions 1 and 5 (both cylinders)
- Cushion Adjustment Positions 2 and 6 (Cyl. #1),
 Positions 4 and 8 (Cyl. #2)
- Specify Non-Standard Positions When Ordering

Cyl. #2

MX0 - 2.50 x 10 - TH

Cylinder #2 Series

◆

- >	Options (Cyl. #1 or Cyl. #2)	Substitute
	Adjustable Stroke - Retract (Specify Length, Example: $AS = 4$ ")	AS
	.25" Urethane Bumper Both Ends	В
	.25" Urethane Bumper Cap Only	BC
	.25" Urethane Bumper Head Only	вн
	BSPP/BSPT Ports - Bumper Piston Seals (1.50" - 8.00" Bore)	ВР
	British Standard Pipe Taper	BSPP
	British Standard Pipe Parallel	BSPT
	Head Cushion	Н
	Cap Cushion	С
	Micro-Adjust (12" Max. Stroke) Available On Double Rod End Models	MA
	Micro-Adjust With Sound Dampening Bumper (12" Max. Stroke)	MAB
	Magnetic Piston For Reed Or Solid State Switches (Models: R10, RAC, and MSS)	MPR
	Optional Port Location (Example: OP=3,7)	OP
	SAE Ports (Specify Size, Example: SAE #10)	SAE
	Stainless Steel Piston Rod, Tie Rods & Nuts, and Fasteners	SSA
	Stainless Steel Fasteners	SSF
	Stainless Steel Tie Rod Nuts	SSN
	Solid Stainless Steel Piston	SSP
	Stainless Steel Piston Rod	SSR
	Stainless Steel Tie Rods	SST
	400 PSI Hydraulic Non-Shock	TH
	Fluorocarbon Seals	VS
	Special Variation (Specify)	XX
>	Stroke (Cyl. #1)	Substitute
	0" to 50" Made-To-Order	
>	Bore	Substitute
	Cyl. 1	Cyl. 2
	3.25	1.50
	4.00	2.00

Note: Refer to Options for specifications.

5.00

6.00

8.00

10.00

12.00

- **Bumpers add .25" per end to cylinder length.
- » Adds Length To Cylinder See "Option Length Adder" Chart Below.

2.50

3.25

4.00

5.00

6.00

8.00

Air To Air and Air To Hydraulic Intensifier Cylinders

Two (2) strokes must be the same, rods are connected.

Air To Air Intensifiers – Standard Combinations

Cyl. #1		Cyl. #2		Intensifier Ratio	Output (PSI) of Cyl. #2 @ Input Pressure Of:				
Bore	Area	Bore	Area	Katio	50	80	100	120	
3.25	8.296	1.50	1.767	4.69	235				
3.23		2.00	3.142	2.64	132	211	264		
4.00	12.566	2.00	3.142	4	200				
4.00		2.50	4.909	2.56	128	205	256		
5.00	19.635	2.50	4.909	4	200				
3.00		3.25	8.296	2.37	119	190	237		
6.00	28.274	3.25	8.296	3.41	171				
0.00		4.00	12.566	2.25	113	180	225		
	50.265	4.00	12.566	4	200				
8.00		5.00	19.635	2.56	128	205	256		
		6.00	28.274	1.78	89	143	178	214	
10.00	78.54	5.00	19.635	4	200				
10.00		6.00	28.274	2.78	139	223			
12.00	113.10	6.00	28.274	4	200				
12.00		8.00	50.265	2.25	113	180	225		

Note: Cyl. #2 Output Not To Exceed 250 PSI.

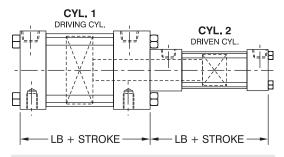
Intensifier Ratio = Cyl. #1 Area Cyl. #2 Area

Output Pressure = Input Pressure X Intensifier Ratio

Note: Usable volume of air-to-air output will not match cylinder #2 volume due to compressibility of air.

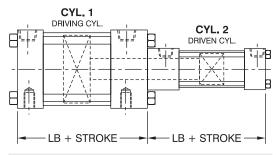
Air To Hydraulic Intensifiers – Standard Combinations

Cyl. #1		Cyl. #2		Intensifier Ratio	Output (PSI) of Cyl. #2 @ Input Pressure Of:				
Bore	Bore Area Bore		Area			80	100	120	
3.25	8.296	1.50	1.767	4.69	235	375			
3.23		2.00	3.142	2.64	132	211	264	317	
	12.566	1.50	1.767	7.11	356				
4.00		2.00	3.142	4	200	320	400		
		2.50	4.909	2.56	128	205	256	307	
5.00	19.635	2.00	3.142	6.25	313				
5.00		2.50	4.909	4	200	320	400		
		3.25	8.296	2.37	119	190	237	284	
	28.274	2.50	4.909	5.76	288				
6.00		3.25	8.296	3.41	171	273	341		
		4.00	12.566	2.25	113	180	225	270	
	50.265	3.25	8.296	6.06	303				
8.00		4.00	12.566	4	200	320	400		
6.00		5.00	19.635	2.56	128	205	256	307	
		6.00	28.274	1.78	89	143	178	214	
10.00	78.54	4.00	12.566	6.25	313				
10.00		5.00	19.635	4	200	320	400		
		6.00	28.274	2.78	139	223	278	334	
	113.10	5.00	19.635	5.76	288				
12.00		6.00	28.274	4	200	320	400		
		8.00	50.265	2.25	113	180	225	270	


Note: Cyl. #2 Output Not To Exceed 400 PSI Non-Shock.

Intensifier Ratio = Cyl. #1 Area Cyl. #2 Area

Output Pressure = Input Pressure X Intensifier Ratio


For complete dimensions, refer to 'TA' section of catalog.

Air To Air Intensifiers - Basic Dimensions

Bore	LB	Bore	LB	Bore	LB	
1.50	3.625	4.00	4.250	10.00	6.375	
2.00	3.625	5.00	4.500	12.00	6.875	
2.50	3.750	6.00	5.000			
3.25	4.250	8.00	5.125			

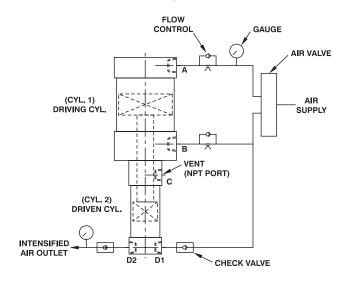
Air To Hydraulic Intensifiers – Basic Dimensions

Bore	LB	Bore	LB	Bore	LB	
1.50	3.625	4.00	4.250	10.00	6.375	
2.00	3.625	5.00	4.500	12.00	6.875	
2.50	3.750	6.00	5.000			
3.25	4.250	8.00	5.125			

Cylinder Volumes (Per Inch Of Cylinder Stroke)

Bore	Area	Gal. Per In. Of Stroke	Bore	Area	Gal. Per In. Of Stroke	Bore	Area	Gal. Per In. Of Stroke
1.50	1.767	.0076	4.00	12.566	.0054	10.00	78.54	.340
2.00	3.142	.0136	5.00	19.635	.085	12.00	113.10	.4896
2.50	4.909	.0213	6.00	28.274	.122			
3.25	8.296	.0359	8.00	50.265	.2175			

Notes: (To Figure Volumes) Cubic Inches = Area X Stroke Gallons = (Area X Stroke)


Example: 3.25" Bore X 16" Stroke Cylinder = 8.296 X 16 = 132.736 Cu. In. Or .575 Gallons

Air to Air Intensifiers - Schematics

- Same Stroke In Each Cylinder
- Rods Are Connected

Actuation Sequence:

- Pressure To Ports 'A' Extends Cylinder
- Pressure To Ports 'B' Retracts Cylinder

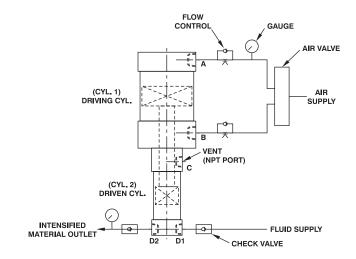
Example:

Shown is an air to air intensifier for applications requiring supply to be intensified. Supply air to port 'A' will stroke cylinder and intensified air will exit port 'D2'. To return cylinder supply air to port 'B' two (2) flow controls used to regulate cylinder speed.

Cylinder Volumes (Per Inch Of Cylinder Stroke)

Bore	Area	Gal. Per In. Of Stroke	Bore	Area	Gal. Per In. Of Stroke	Bore	Area	Gal. Per In. Of Stroke
1.50	1.767	.0076	4.00	12.566	.0054	10.00	78.54	.340
2.00	3.142	.0136	5.00	19.635	.085	12.00	113.10	.4896
2.50	4.909	.0213	6.00	28.274	.122			
3.25	8.296	.0359	8.00	50.265	.2175			

Notes: (To Figure Volumes) Cubic Inches = Area X Stroke Gallons = $(\underline{\text{Area X Stroke}})$ 231


Example: 3.25" Bore X 16" Stroke Cylinder = 8.296 X 16 = 132.736 Cu. In. Or .575 Gallons

Air to Hydraulic Intensifiers - Schematics

- Same Stroke In Each Cylinder
- Rods Are Connected

Actuation Sequence:

- Pressure To Ports 'A' Extends Cylinder
- Pressure To Ports 'B' Retracts Cylinder

Example:

Shown is an air to hydraulic intensifier for applications requiring fluid supply to be intensified. Supply air to port 'A' will stroke cylinder and intensified material will exit port 'D2'. To return cylinder supply air to port 'B' two (2) flow controls used to regulate cylinder speed.